

Open Cyberinfrastructure for an Open Society

Frank Würthwein
Director, San Diego Supercomputer Center

December 20th 2023

Three Challenges

- The gap between those who have and those who can't afford is becoming wider.
- How do we bridge the gap between classroom and research scale of any concept we teach?
- The end of Moore's Law is leading to a proliferation of "architectures" ... domain science adoption is at risk.

From Vision to Deployment

I will switch back and forth between

- Vision & Ideas

ldea

– R&D

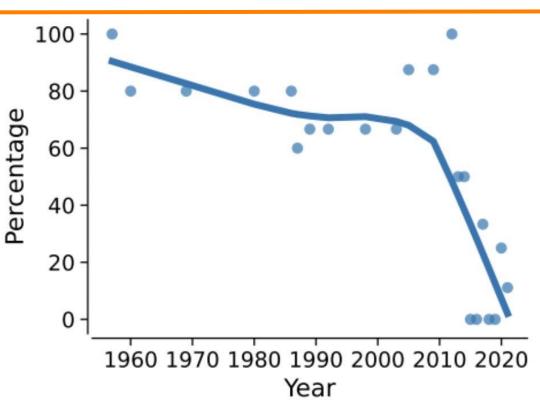
R&D

Existing "production" systems

Production

To minimize confusion, I'll tag my slides with these labels as much as possible

We will look at these challenges using AI as a lense but the challenges are far more general than that



Pre-training not for everybody

% of large-scale AI results from academia

From data in https://arxiv.org/abs/2202.05924

Academia is no longer competitive for large-scale Al model training.

All but pre-training is within reach of most of academia

GPT Assistant training pipeline

Stage	Pretraining	Supervised Finetuning	Reward Modeling	Reinforcement Learning
Dataset	Raw internet text trillions of words low-quality, large quantity	Demonstrations Ideal Assistant responses, ~10-100K (prompt, response) written by contractors low quantity, high quality	Comparisons 100K –1M comparisons written by contractors low quantity, high quality	Prompts ~10K-100K prompts written by contractors low quantity, high quality
	•	•	•	•
Algorithm	Language modeling predict the next token	Language modeling predict the next token	Binary classification predict rewards consistent w preferences	Reinforcement Learning generate tokens that maximize the reward
	4	init from	init from	init from SFT use RM
Model	Base model	SFT model	RM model	RL model
Notes	1000s of GPUs months of training ex: GPT, LLaMA, PaLM can deploy this model	1-100 GPUs days of training ex: Vicuna-13B can deploy this model	1-100 GPUs days of training	1-100 GPUs days of training ex: ChatGPT, Claude can deploy this model

https://karpathy.ai/stateofgpt.pdf

Towards an Open Infrastructure

Horizontally open => institutions can integrate their resources

Vertically open => projects can build on the infrastructure

Production

Long Term Vision

- Create an Open National Cyberinfrastructure that allows the federation of CI at all ~4,000 accredited, degree granting higher education institutions, nonprofit research institutions, and national laboratories.
 - Open Science
 - Open Data
 - Open SourceOpen Compute
 - Open Infrastructure ← Open Storage & CDN

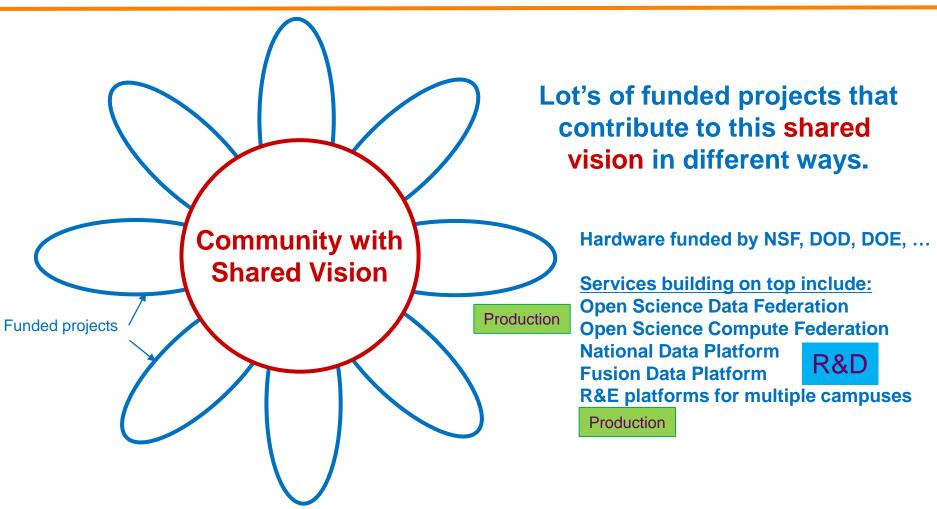
Open devices/instruments/loT, ...?

Openness for an Open Society

3900 accredited institutions of higher learning

from a few hundred to a few tens of thousands of students

Democratize Access



- Connect every community college, every minority serving institution, and every college and university, including all urban, rural, and tribal institutions to a world-class and secure R&E infrastructure, with particular attention to institutions that have been chronically underserved;
- Engage and empower every student and researcher everywhere with the opportunity to join
 collaborative environments of the future, because we cannot know where the next Edison, Carver, Curie,
 McClintock, Einstein, or Katherine Johnson will come from; and

Community vs Funded Projects

Open Infrastructure is "owned" and "built" by the community for the community

Al has redefined academic infrastructure needs

- Majority of colleges in USA are too small to afford a data center.
 - A good number are still struggling with broadband connectivity
 - Even if they invested the funds, they don't have the human infrastructure to operate an HPC cluster and distributed storage system to even support AI education, leave alone AI research.
- Most colleges that have a data center, aren't prepared to host modern hardware in that data center.
 - All modern HPC or Al racks require liquid cooling.
 - Even when vendors don't support it (e.g. NVIDIA HGX)
 - Power density has gone from 20-30kW/rack to 50-150kW/rack within the last few years.
- Even if they have power and cooling, the price per rack has exploded
 - Expanse HPC system @ SDSC was ~\$10M for 13 racks in 2020, or ~\$0.75M per rack
 - Today, we are looking at ~\$4M per rack for high end AI equipment

We need R&D focus on reducing TCO of CI for AI

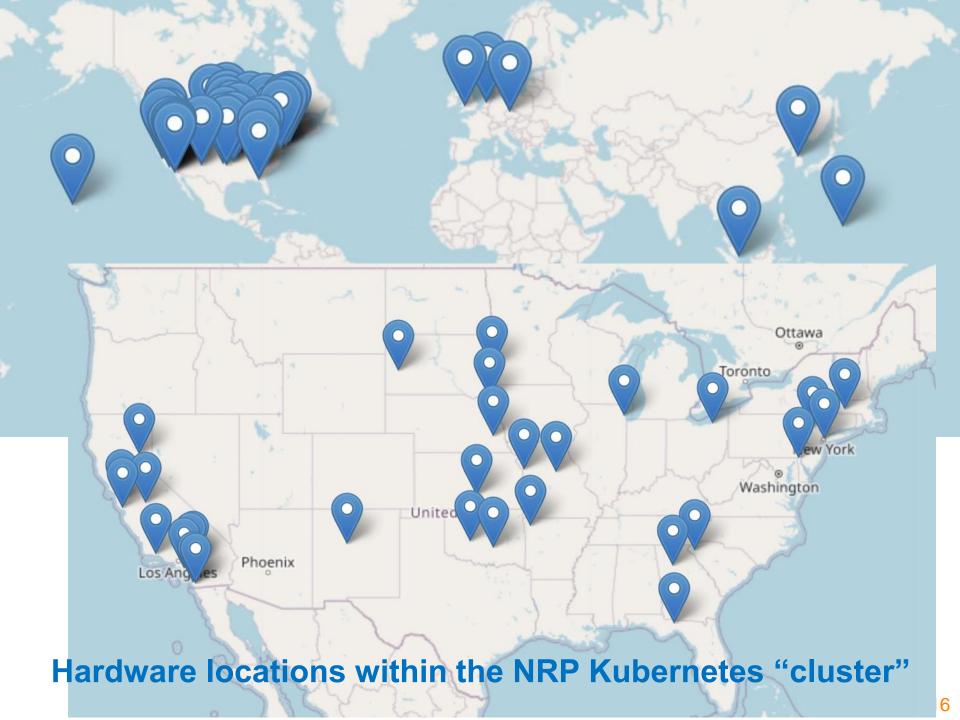
NATIONAL RESEARCH PLATFORM (NRP)

OUR ATTEMPT TO EXECUTE ON THIS VISION

Flexible Architecture to build on horizontally and vertically

 Depending on effort available and control desired, you can build on NRP both vertically and horizontally at different layers of the stack.

 NRP is a non-local extendable container deployment platform, thus allowing many uses unthinkable for a SLURM cluster in a data center.



Open Science Data Federation

an "application" deployed on NRP

Institutions joining at the batch or storage system layer

Bridging Education & Research by having them co-exist on one platform

A lot of the smaller colleges care more about educational use than research use.

All colleges struggle with applying classroom concepts to research scale problems.

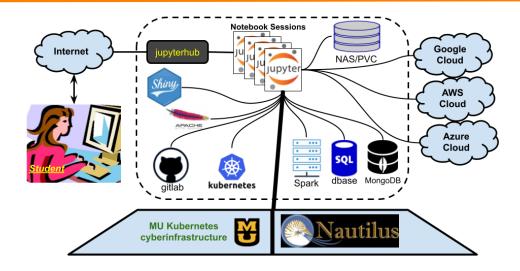
Building AI Education on NRP

- University of Oklahoma Libraries presented at CNI 2022 how they built a R&E platform on NRP
- GP-Engine (NSF OAC 2322218) builds a regional compute cluster across 7 states in the Great Planes Regional Network.
 - Hardware is mostly GPUs, with strong focus on supporting STEM education, especially AI.

CENIC AI Resource

- Collaboration between California's regional R&E network, NRP, and multiple California State Universities with strong focus on AI education
- Includes "The California State University System Technology Infrastructure for Data Exploration (TIDE)" (NSF OAC 2346701)
 - The CSU system includes 23 campuses, 21 of which are Hispanic-Serving Institutions.
 - "... most diverse higher education system in America ... provides 50% of all bachelor degrees in California ..."
 - "TIDE creates a pioneering computational core facility within the California State University (CSU) system, focused on ML and AI "

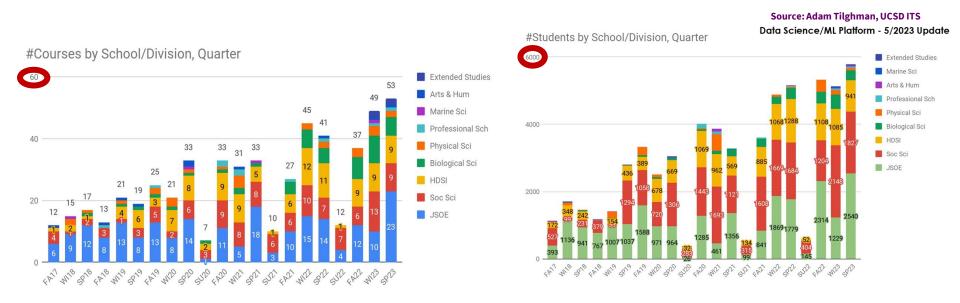
GP-Engine



Grant Scott

https://scottgs.mufaculty.umsystem.edu/

NSF OAC 2322218



- Computer Science Undergraduate Classes
- Computer Science HPC Classes
- Undergraduate Data Science
- HPC Emphasis Graduate Data Science
- State & Federal Government Training Programs

Educational Computing at UCSD

UCSD operates a modest size cluster (~140) 32-bit GPUs for use in the classroom

During FY23, this was used by 6,502 undergraduates & 1847 graduate students 33% of 1.5M pod-hours per year are used by AI/ML containers
In Spring Quarter 2023, 53 courses across 8 schools were taught on this system

Selected Courses, Spring 2023

- Advanced Computer Vision
- Bioinformatics for Immunologists
- Computational Physics: Probabilistic Models/Sim.
- Data Analysis/Design for Biologists
- Data Science/Spatial Analysis
- Deep Learning and Applications
- Intro to Causal Inference
- Neural Networks/Pattern Recognition
- Numerical Analysis for Multiscale Biology
- Robot Manipulation and Control

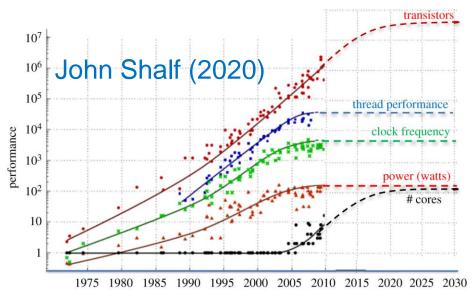
Al is accelerating a trend that already existed prior.

Al@UCSD on SDSC systems

- SDSC did a keyword search for AI,ML across project descriptions on our systems to find AI projects active in 2023 with PIs from UC San Diego.
- We find >60 "faculty", across 23 departments engaged in AI/ML @ SDSC.
- The departments with the largest number of PIs engaged in AI/ML@SDSC are Computer Science (9), SDSC (7), Oceanography (6), Data Science (6), Cellular & Molecular Medicine (5), and Radiation Medicine (4).
- In terms of Schools, Engineering (6 departments), Health Sciences (7 units), Physical Sciences (3 departments), Social Sciences, Biological Sciences, Pharmacy, and Oceanography are engaged in AI@SDSC.
- We find that Engineering and Health Sciences account for roughly ¼ of the AI/ML researchers each.

NRP brings CS R&D and Domain R&D onto the same platform

NRP blurs the lines between "testbed" and "production" CI


Create social cohesion to accelerate domain science adoption of new programming paradigms & architectures

"Domain Specific Architectures"

"end of Moore's law" motivates new architectures

https://doi.org/10.1098/rsta.2019.0061

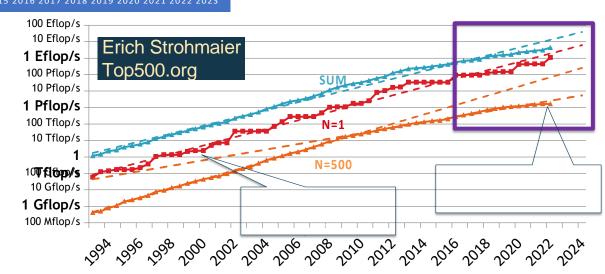
PI, Tajana Rosing

Mark Papermaster, CTO of AMD

PRISM, a Jump 2.0 project funded by SRC is early user of FPGAs@NRP

NRP supports FPGAs (Xilinx & Intel), P4 switches, NVIDIA DPUs & HGXs

Committed to be a "Playground" of technologies, easily deployed and operated.


25

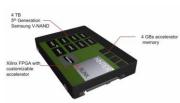
From John Shalf talk at SC23

Advanced Technology Laboratory on NRP

- Programmable computational capabilities emerged in devices of all kinds
 - Storage devices with embedded FPGAs => "Computational Storage"
 - GPUs on Network Interface Cards => "Data Flow Programming"
 - Programmable switches, down to individual ports => "Programmable Networks"
- We innovate nextGen systems in ATL to solve grand challenges of science
- Innovations made available to all of open science via our Open Infrastructure

Idea

Strategic Objective is to bring CS Research closer to Domain Research in the hope of decreasing time to adoption of new technologies & ideas


NVIDIA BlueField DPU

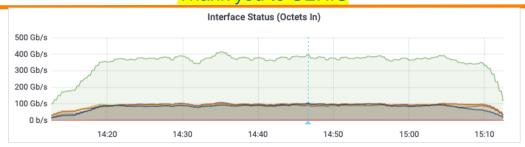
P4 programmable switches

Xilinx SmartSSD

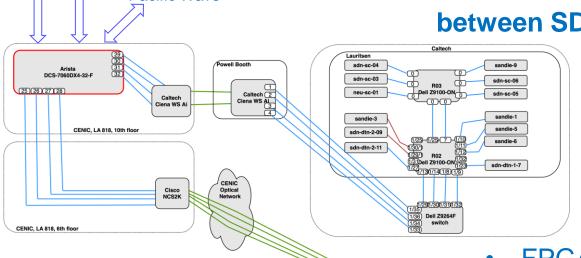
FABRIC

ESnet

400G WAN Infrastructure



Thank you to CENIC


We can peer at 400G in LA with multiple networks via our 400G Arista switch

Pacific Wave

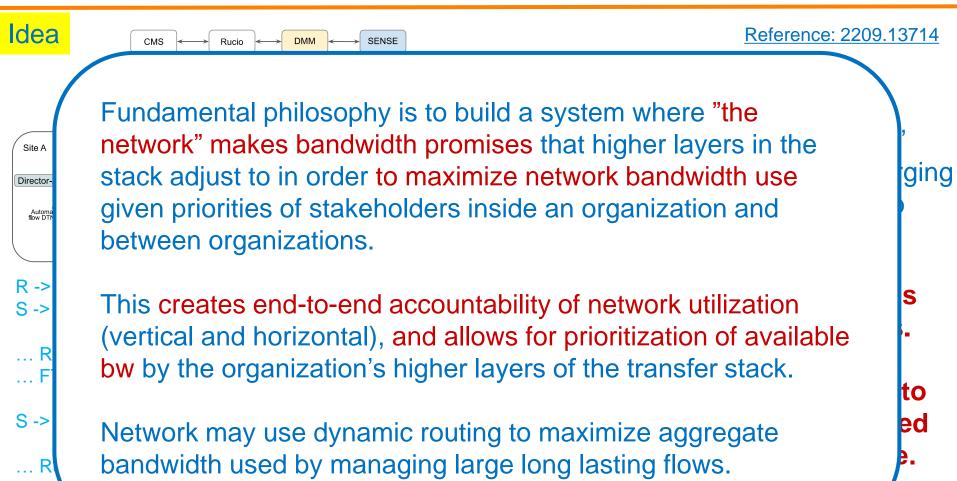
UCSD/SDSC

Successfully sustained 400G transfers between SDSC & Caltech using XRootD

LICSD SDSC OASIS

4X100G

Infrastructure at SDSC:


- FPGAs: 32 U55C, 24 Bitware 520
- 400G P4 programmable switches
- 8 NVIDIA HGX w 8x80G A100s each
- 400TB of NVMe
- FABRIC node

R cor

R&D towards Network Bandwidth Accountability

affected by new higher priority request. R thus can adjust strategy if warranted.

fat are

Summary & Conclusion

NRP has a very ambitious vision

- Horizontally open
 - Today about 3x # of GPUs total than what was part of Cat-II PNRP award
 - PNRP award started testbed operations phase on 3/27/23
- Vertically Open
 - We have built the "Open Science Data Federation" on top of NRP,
 - ... and are starting to build "Fusion Data Platform for Al" on top of NRP
 - ... and are starting to build elements of the National Discovery Cloud for Climate on top of NRP (Pelican, National Data Platform, NCAR integration, ...)
- "Playground" for CS R&D on the same platform as "Production" system for Domain Scientists
- Recent obsession with Al accelerates prior trends
- We are off to an excellent start ... but there is lot's more to come over the course of the next 5 years.

Acknowledgements

This work was partially supported by the NSF grants OAC-1541349, OAC-1826967, OAC-2030508, OAC-1841530, OAC-2005369, OAC-21121167, CISE-1713149, CISE-2100237, CISE-2120019, OAC-2112167

